
PACLIC 28

!272

Incrementally Updating the SMT Reordering Model

Shachar Mirkin

Xerox Research Centre Europe
6 Chemin de Maupertuis, Meylan, France
shachar.mirkin@xrce.xerox.com

Abstract

This work is concerned with incrementally
training statistical machine translation (SMT)
models when new data becomes available.
That, in contrast to re-training new models
based on the entire accumulated data. In-
cremental training provides a way to per-
form faster, more frequent model updates, en-
abling keeping the SMT system up-to-date
with the most recent data. Specifically, we
address incrementally updating the reorder-
ing model (RM), a component in phrase-based
machine translation that models phrase order
changes between the source and the target
languages, and for which incremental train-
ing has not been proposed so far. First, we
show that updating the reordering model is
helpful for improving translation quality. Sec-
ond, we present an algorithm for updating the
reordering model within the popular Moses
SMT system. Our method produces the exact
same model as when training the model from
scratch, but doing so much faster.

1 Introduction

Parallel data for training statistical machine trans-
lation (SMT) models is being constantly generated,
both by professional and by casual translators. Typ-
ically, large amounts of data are required to produce
decent SMT models, yet training a model is an ex-
pensive process in terms of time and computational
resources. Most often, and in particular when com-
munity effort is made to translate new content, it is
desirable to keep the system up-to-date with the new
data; yet, constant retraining is not feasible. The

line of research concerning incremental training for
SMT has been addressing this problem, aiming at
updating the model given new parallel data, rather
than retraining it.

Typical phrase-based SMT models use a log-
linear combination of various features that mostly
represent three sub-models: a translation model
(TM), responsible for the selection of a target phrase
for each source phrase, a language model (LM),
addressing target language fluency, and a reorder-
ing model (RM). The reordering model is required
since different languages exercise different syntac-
tic ordering. For instance, adjectives in English pre-
cede the noun, while they typically follow the noun
in French (the blue sky vs. le ciel bleu); in Mod-
ern Standard Arabic the verb precedes the subject,
and in Japanese the verb comes last. As a result,
source language phrases cannot be translated and
placed in the same order in the generated transla-
tion in the target language, but phrase movements
have to be considered. This is the role of the re-
ordering model. Estimating the exact distance of
movement for each phrase is too sparse; therefore,
instead, the lexicalized reordering model (Koehn,
2009) estimates phrase movements using only a few
reordering types, such as a monotonous order, where
the order is preserved, or a swap, when the order
of two consecutive source phrases is inverted when
their translations are placed in the target side.

Most research on incremental training for SMT
addresses parallel corpus alignment, the slowest step
of the model training and a prerequisite of many of
the following steps, including the reordering model
generation. Currently, keeping the reordering model

Copyright 2014 by Shachar Mirkin
28th Pacific Asia Conference on Language, Information and Computation pages 272–281

PACLIC 28

!273

0 1 2 3 4 5 6 7 8 9 10

29.0

30.0

31.0

32.0

33.0

Cycle

BL
EU

RTL
TL

Figure 1: BLEU scores of an SMT system trained with
additional data, over 10 cycles, with and without updat-
ing the reordering model. R, T and L denote the mod-
els that have been updated – Reordering, Translation and
Language models. The exact setting of this experiment,
as well as additional details, are provided in Section 6.

up-to-date requires retraining. Yet, refraining from
updating this model is expected to yield inferior
translation performance. An example is shown in
Figure 1, comparing results with and without an up-
dated reordering model. While not as important a
component as the TM or the LM (see further results
in Section 6), updating the RM does improve trans-
lation. We therefore seek to allow quick incremen-
tal updates of the RM within Moses (Koehn et al.,
2007). In this paper we outline several practical op-
tions to carry out this update, and describe an imple-
mentation of one of them. In a set of experiments
we show both that RM updates help improving re-
sults and that is can be carried out much quicker than
reconstructing the model from scratch.

Next, we describe related work on SMT model
updates (Section 2), and provide the details of the
Moses reordering model and its relevant data struc-
tures (Section 3); we outline and analyze several op-
tions to perform RM updates in Section 4, and pro-
pose an method in Section 5. Section 6 includes
evaluation in terms of translation performance and
run-time, and Section 7 summarizes this work and
suggests future research directions.

2 SMT model updates

Statistical machine translation systems rely on the
availability of large parallel corpora, in particular
of the target domain. Such corpora are not always
available at the initial stage of the SMT model train-
ing, but are sometimes obtained during the life-
time of the system. More parallel data, especially
in-domain, may become available, for instance, as
users of the system post-edit the automatic transla-
tions. The source texts and their corrected transla-
tions then become new parallel corpora with which
the system can be updated. It is then desirable to in-
corporate the new data into the SMT model as soon
as possible. This is particularly a concern for Com-
puter Assisted Translation (CAT) systems, where
one wishes to reflect the corrections immediately to
avoid repeating translation errors that have already
been corrected. The straightforward way to incor-
porate new data into an SMT model is to retrain the
model, i.e. to use all the data accumulated until that
point and create the model all over again. However,
such retraining may be a lengthy and computation-
ally expensive process, leading to long lags between
system updates.

Incremental training provides a principled way to
incorporate new data into an existing model with-
out retraining it. For SMT, incremental training re-
search mainly focuses on updating the alignment
probabilities from the parallel data. Rightfully so –
alignment is the most time-consuming step in SMT
model training, which is needed for generating both
the translation and the reordering models. Once the
alignment model has been updated, and the new data
aligned, it is possible to create new data-structures
for all sub-models which take into account the entire
parallel data. Overall, model update with incremen-
tal training is typically a much faster process.

GIZA++1 (Och and Ney, 2003) is probably the
best known alignment tool, and is also the tool used
in the Moses translation system. Yet, even with
its multi-threaded version, MGIZA++ (Gao and Vo-
gel, 2008), alignment remains the longest step in the
SMT model generation. GIZA, like other alignment
tools, is using the Expectation Maximization (EM)
algorithm (Cappé and Moulines, 2009) to simulta-
neously learn alignment and translation probabili-

1
https://code.google.com/p/giza-pp/

PACLIC 28

!274

ties (Brown et al., 1993). Yet, EM relies on having
all the data available in advance. When incremental
updates to the model are required, online EM comes
into play. Here, the model parameters may be up-
dated every time a new data point – a sentence-pair,
in our case – is introduced. This makes it feasible to
perform more frequent updates, thus maintaining the
model up-to-date with recent data. Several variants
of online EM have been proposed (Liang and Klein,
2009), among which is stepwise EM used in (Leven-
berg et al., 2010; Levenberg, 2011) for updating the
parameters of the translation and alignment models.
Using IBM Model 1 (Brown et al., 1993) with HMM
alignments (Vogel et al., 1996), they collect counts
for translations and alignments and update them by
interpolating the statistics of the old and the new
data. Rather than updating the model for each data
point, they do so for a set of bi-sentences, referred to
as mini-batch. In this work we are using Incremental
GIZA++,2 an implementation of this work, updating
the model multiple times with mini-batches of addi-
tional parallel data.

Force alignment (Gao et al., 2010) is a technique
for aligning new data using an existing model. This
enables adding the source and its translation as addi-
tional training material. It does not, however, make
any updates to the model.3

An alternative practical approach to incrementally
updating alignments, referred to as quick updates,
was proposed in (Mirkin and Cancedda, 2013). In-
stead of updating the existing translation and lan-
guage models, separate models are generated from
smaller amounts of data (e.g. solely the new data)
and combined with the previous models through a
log-linear combination. This approach allows even
faster updates, and in some settings yields compara-
ble results to retraining the model.

Yet, in contrast to the translation and language
models, currently Moses supports a single reorder-
ing model. Hence, while it is possible to quickly
create small TMs and LMs, this is not possible for
the reordering model. If its update is ignored, bi-
phrases absent from the reordering model receive a
default score, resulting with suboptimal results, as

2
https://code.google.com/p/inc-giza-pp/

3We have experimentally confronted Incremental GIZA
with force alignment and learned that the former method out-
performs the latter.

demonstrated in Section 1. Incremental updates of
the reordering model have not been addressed yet
and the only option currently available is to gener-
ate the reordering model from start, which might be
a lengthy process. In the following sections we de-
scribe our suggestion for incremental and quick up-
dates of this model.

3 The Moses reordering model

3.1 Reordering probability estimation

As we mentioned in Section 1, the reordering model
estimates the probability of phrase movements be-
tween the source and the target. To deal with spar-
sity, movement is measured in the lexicalized re-
ordering model in terms of orientation types, rather
than exact move distance. The default orientations
used in Moses are listed below, and are referred to
as msd (Koehn, 2009):

• mono (monotonous) – the preceding target
phrase is aligned to the preceding source
phrase.

• swap: the preceding target phrase is aligned to
the following source phrase.

• discontinued (also called other): the phrases
did not occur consecutively, but other phrases
were inserted between them.

Formally, the probability of each of the above ori-
entation types, o, for a source phrase f and a target
phrase e is denoted p(o|f, e). Counting the orien-
tation instances of each phrase pair from the word
alignments, in each direction, maximum likelihood
is used to estimate this probability:

p̂(o|f, e) = count(o, f, e)P
o

0 count(o0, f, e)
=

count(o, f, e)

count(f, e)
(1)

The estimation can be smoothed by additive
(Laplace) smoothing with a factor �:

p̂(o|f, e) = � + count(o, f, e)P
o

0 � + count(f, e)
(2)

PACLIC 28

!275

3.2 Data structures

Extracted phrases During the training of a
phrase-based Moses model, phrase pairs are ex-
tracted from the word-aligned parallel data and used
for training both the TM and the RM. Within the
phrase extraction step, three files containing the list
of phrase pairs are created. Two of them consist of
the word alignments within the phrases, one in each
direction (source-to-target and target-to-source); the
third, the reordering file,4 shows the orientation of
each occurrence of the phrase pair, in either direc-
tion. Phrase pairs are alphabetically ordered in these
files, and repeat if more than one instance of the
phrase pair is encountered.

Figure 2 shows a few lines from a reordering
file, of an English to French model, built with the
msd (monotonous-swap-discontinued) orientations
(Koehn et al., 2005)5 Each line in the reordering
file contains three parts, separated by ‘|||’: source
phrase, target phrase, and 2 indicators of the orien-
tation in which this instance was found, when ex-
tracting the phrases from source-to-target and from
target-to-source alignments.

Reordering table The reordering table (RT), cre-
ated from the reordering file, is the data structure
representing the reordering model. It contains prob-
ability estimations for each orientation of a phrase
pair in either direction. In contrast to the reordering
file, in the RT, each phrase pair appears only once.
Figure 3 displays a few lines from a reordering ta-
ble. In Section 5 we show how these estimations are
computed.

4 Updating the reordering model

In this section we describe several options to gen-
erate an updated reordering model given new data.
We are specifically concerned with a multi-update
scenario, where the model needs to be updated with
new data repeatedly rather than only once.

4.1 Reordering model generation

Several steps must be performed before a Moses RM
can be trained. The necessary steps on which the
model generation depends on are listed below.

4Not to be confused with the reordering table.
5More precisely, this is the msd-bidirectional-fe model, also

referred to as wbe-msd-bidirectional-fe-allff.

1. Corpus preparation: tokenization, lowercasing
and any other preprocessing.

2. Corpus alignment in both directions, source-to-
target and target-to-source.

3. Bidirectional phrase extraction.
4. Creation of the reordering file.

Note that some steps are necessary for other pur-
poses. For instance, Step 1 is necessary for all
subsequent steps, including LM training, and Steps
2 and 3 are also necessary for training the TM. In
practice, the creation of the reordering file (Step 4)
is done within the phrase extraction step.

From the reordering file, the reordering table is
created by counting the number of occurrences of
each orientation in each direction and normalizing
by the total number of occurrences of the phrase
pair, as in Equation 2.

4.2 Update options

We now consider several options for updating the
reordering model, listing the tasks that need to be
performed and analyze their complexity, where the
size of a data structure is measured in terms of the
number of lines it contains. We can assume that the
data that was already used to train the current model
(the older data) is significantly larger than the train-
ing data which we use for a single update (the newer
data). This would typically be the case, for instance,
with training data that is based on human feedback,
as described earlier. For simplicity, we always refer
below to the old data as A and to the new data as
B without cycle indexes.6 As we proceed with sub-
sequent update cycles, A keeps growing, while the
size of B does not depend on prior cycles.

We denote the set of phrase pairs instances gener-
ated from the training data – the phrase pairs in the
reordering file – as P , with subscript A, B or AB,
marking whether it refers to the old, new or merged
(updated) data, respectively. As mentioned, B is typ-
ically much smaller than A: |PB| ⌧ |PA|, and the
merged set is at least as large as the old one. That is,
|PAB| � |PA|, and PAB is strictly larger than PA
if any new phrase pairs are found in the new data
relative to the older one.

6Denoting the initial “old” training data as A0 and the first
new data as B1, Ai = Ai�1 [Bi, where i = 1, 2, . . . and ’[’
denotes the concatenation of the two training datasets.

PACLIC 28

!276

but of course ||| mais bien sûr ||| mono mono

but of course ||| mais bien sûr ||| mono other

but of course ||| mais bien sûr ||| mono other

...

confusion between the ||| confusion entre le ||| other other

confusion between the ||| confusion parmi les ||| other mono

...

emerging ||| naissante ||| mono mono

emerging ||| naissante ||| other mono

emerging ||| naissante ||| other mono

emerging ||| naissante ||| other other

emerging ||| naissante ||| swap other

emerging ||| naissante ||| swap other

emerging ||| naissante ||| swap other

Figure 2: Sample lines from a Moses reordering file with msd orientations.

but of course ||| mais bien sûr ||| 0.78 0.11 0.11 0.33 0.11 0.56

...

confusion between the ||| confusion entre le ||| 0.20 0.20 0.60 0.20 0.20 0.60

confusion between the ||| confusion parmi les ||| 0.20 0.20 0.60 0.60 0.20 0.20

...

emerging ||| naissante ||| 0.18 0.41 0.41 0.41 0.06 0.53

Figure 3: Sample lines from a Moses reordering table generated for the msd orientations, with 6 feature scores for
each phrase pair. The scores are probability estimations, summing to 1 for each direction. For easier display, we round
the scores to 2 places after the decimal point.

In contrast to the reordering file, the reordering
table contains only unique phrase pairs. We denote
the set of unique phrase pairs in each data struc-
ture with the superscript (u). For example, the
phrase pairs in the new RT are marked as P(u)

B ,
where |P(u)

B | |PB|. To get an intuition of the in-
volved sizes, a reordering file created from 500,000
lines of the tokenized, lowercased Europarl corpus
(Koehn, 2005) contains approximately 57M lines of
non-unique phrase pairs, and the reordering table
contains 33M pairs (58%); the figures for the com-
plete Europarl corpus (1.96M lines after cleaning)
are 219M for the reordering file in comparison to
107M lines for the RT (49%).7

The update options are listed hereunder. Using
Incremental GIZA, all produce the same RT. With
respect to complexity, we assume that the old re-
ordering file and the old RT are available at no cost
because they were created at previous training itera-
tions. We also assume that phrase extraction of the
new data, from which the reordering file is created,

7The more data we use, especially of the same domain, the
fewer new phrase pairs we expect to see; since the RT, but not
the reordering file, contains only unique phrase pairs, the ratio
of their sizes is expected to decrease with more data.

is done in any case since it is also needed for the
translation model.

I. Constructing a reordering table from scratch.

This is the non-incremental option to construct the
reordering table. Phrase pairs are extracted from
the entire data, sorted and a reordering table is con-
structed. This is obviously the slowest option, and
the only one available to-date in Moses. All follow-
ing options are incremental.

II. Merging reordering files and creating a

merged reordering table. Given the reordering
file from the new data, B, we can perform a merge of
two reordering files in either one of two ways: con-
catenate PA and PB and sort the concatenation, or
– since both files are sorted – read the files line-by-
line in parallel and merge them to a single file that
is already sorted. This can be done in linear time in
the size of the two reordering files, ⇥(|PA|+ |PB|).
We then create a single reordering table by an ad-
ditional pass over the merged reordering file. The
merge of reordering files and creation of the reorder-
ing table can be collapsed into one step, requiring a
single pass, but we cannot avoid creating the merged
reordering file, since if we follow this option, this

PACLIC 28

!277

file will be required for the next update cycle.

III. Merging a reordering file with an existing re-

ordering table. For this option we need to keep
track of the number of occurrences of each phrase
pair, since this information is lost during the cre-
ation of the reordering table. We pass through the
old RT and the new reordering file at the same time,
comparing their entries (⇥(|P(u)

A |+ |PB|)). Unique
entries in the RT are copied as-is to the merged RT,
and new entries are created in it for phrase pairs that
appear only in the reordering file, using all the lines
of the same phrase pair. Whenever we encounter a
phrase pair that exists in both, we update the proba-
bility estimations of the pair in the RT, based on the
accumulated counts from the two data structures.

IV. Merging two reordering tables. This options
requires tracking occurrence counts as well. Here,
we first create a new RT from the reordering file of
the new data in ⇥(|P

B

|), and then merge the old
and the new tables. The merge is linear in the size
of the two tables, ⇥(|P(u)

A | + |P(u)
B |). Starting with

two sorted tables, the merged table we end up with
is also sorted. As above, entries of unique phrase
pairs are copied as-is to the merged RT, and when
we encounter two lines with the same phrase pair,
we update the pair’s probability estimations base on
the sum of its counts in the two tables. If we keep oc-
currence counts in the reordering tables themselves,
once the merged table has been created, there is no
further need to keep the reordering file. The merged
RT will be sufficient for subsequent update cycles.

The fourth option may be slightly slower than the
third one since it requires an additional pass through
the new RT. However, any processing of B is fast
in terms of actual runtime, due to its small size in
the addressed scenario. We chose to implement the
fourth option – merging of two reordering tables –
due to its simplicity, and describe it in detail in Sec-
tion 5.

5 Merging reordering tables

In this section we present a simple algorithm for a
reordering model update via the merge of two re-
ordering tables. As mentioned in Section 4, this up-
date option requires keeping track of the number of
occurrences of each phrase pair. We first present the

format and technical details of this extension of the
reordering table, and then provide the details of the
suggested merge itself.

5.1 Reordering table with counts

To enable updating the table without generating it
from scratch we must keep track of the number of
occurrences of each phrase pair. To do it without
making changes to Moses code, we add the total
count of a phrase pair as an additional value fol-
lowing the feature scores in the reordering table.
Figure 4 shows several lines of the reordering table
shown earlier, now including counts.

Below is a demonstration of calculating the ori-
entations scores in Figure 4 in the source-to-target
direction, using Equation 2. In the equations be-
low, S(·) is a scoring function and C(·) is a count
function, using counts from the reordering file; f is
‘emerging’ and e is ‘naissante’ from Figure 4, which
occur totally 7 times, out of which, the mono ori-
entation occurs once in this direction, and each of
swap and other occur 3 times. Each score is the re-
sult of smoothing the counts with a � factor of 0.5
to avoid 0 probabilities. While demonstrated on the
msd model, there is nothing that prevents applying
the same approach to a different set of orientations.

S(mono|f, e)

=
� + C(mono, f, e)

3� + C(f, e)
=

0.5 + 1

1.5 + 7
= 0.18 (3)

and

S(swap|f, e)

=
� + C(swap, f, e)

3� + C(f, e)
=

0.5 + 3

1.5 + 7
= 0.41 (4)

Hence, recovering from the score the count of a
specific orientation (e.g. mono) for a given phrase
pair:

C(mono, f, e)

= S(mono|f, e)⇥ (3� + C(f, e))� �

= 0.18⇥ (1.5 + 7)� 0.5 = 1 (5)

PACLIC 28

!278

but of course ||| mais bien sûr ||| 0.78 0.11 0.11 0.33 0.11 0.56 3

...

confusion between the ||| confusion entre le ||| 0.20 0.20 0.60 0.20 0.20 0.60 1

confusion between the ||| confusion parmi les ||| 0.20 0.20 0.60 0.60 0.20 0.20 1

...

emerging ||| naissante ||| 0.18 0.41 0.41 0.41 0.06 0.53 7

Figure 4: Sample lines from a reordering table with counts.

To support RT with counts, the configuration (ini)
file is adjusted to include 7 features instead of 6 (the
number of features in the msd model), and its weight
is set to 0. Figure 5 shows the relevant lines from a
tuned configuration file, updated to support counts.

5.2 Merging RTs

Algorithm 1 presents the pseudo code of merging
two reordering tables with counts, RA and RB, into
a single one, RAB. The procedure is as follows: We
read the reordering tables in parallel, one line at a
time, and compare the phrase pair in the old table
with the one in the new one. The comparison is al-
phabetical, using a string made of the source phrase,
the delimiter and the target phrase. When the two
lines refer to different phrase pairs, we write into
the merged table, R

AB

, the one that alphabetically
precedes the other, and read the next line from that
table. If they refer to the same phrase pair we merge
the lines into a single one, which we write into RAB,
and advance in both tables. When one table has been
read completely, we write the remainder of the other
one into RAB.

Merging two lines into a single one
(MERGE_LINES in Algorithm 1) consists of
the following steps:

1. Convert the feature scores in each line into
counts, as in Equation 5.

2. Sum up the counts for each orientation, as well
as the total count.

3. Convert the updated counts of the orientations
into scores, as in Equations 3 and 4.

As mentioned in Section 4, the complexity of this
algorithm is linear in the length of the tables, i.e.
⇥(|P(u)

A |+ |P(u)
B |). In terms of memory usage, nei-

ther table is fully loaded into memory. Instead, at
any given time a single line from each table is read.

Algorithm 1 Merging reordering tables with counts
1: procedure MERGE_R_TABLES(RA,RB)
2: Read first lines of RA and RB, R(1)

A , R(1)
B

3: i := 1; j := 1

4: while R
(i)
A 6= null and R

(j)
B 6= null do

5: if R
(i)
A < R

(j)
B then // Compare bi-phrases

6: R
(i)
A ! RAB

7: i := i+ 1
8: else if R

(i)
A > R

(j)
B then

9: R
(j)
B ! RAB

10: j := j + 1
11: else // Identical bi-phrases
12: MERGE_LINES(R(i)

A , R
(j)
B) ! RAB

13: i := i+ 1; j := j + 1
14: end if

15: end while

// Write the rest of the tables:
// at least one of them is EOF

16: while R
(i)
A 6= null do

17: R
(i)
A ! RAB

18: i := i+ 1
19: end while

20: while R
(j)
B 6= null do

21: R
(j)
B ! RAB

22: j := j + 1
23: end while

24: end procedure

PACLIC 28

!279

LexicalReordering name=LexicalReordering0 num-features=7

type=wbe-msd-bidirectional-fe-allff input-factor=0

output-factor=0

LexicalReordering0= 0.0857977 0.0655027 0.0486593 0.115916 -0.0182552 0.0526204 0

Figure 5: An example Moses ini file with required changes to support RT counts.

6 Evaluation

In this section we evaluate updating the reordering
model from two aspects: (i) translation performance
and (ii) run-time. Specifically, we first show that up-
dating this model helps improving translation, as re-
flected in the BLEU score (Papineni et al., 2002);
then we show that the incremental update is faster
than the complete one.

6.1 Setting

We used the IWSLT 2013 Evaluation Campaign
data, of the English-French MT track.8 The initial
model was trained with 10,000 WIT3 (Cettolo et al.,
2012) sentence-pairs; we use 50,000 additional ones
to train updated models. The additional data is split
into 10 parts of 5,000 bi-sentences, each added to the
data used in the prior cycle to generate an updated
model. Moses9 is used as the phrase-based SMT
system, with a configuration comprising of a sin-
gle phrase table and a single LM. 5-gram language
models are trained over the target-side of the train-
ing data, using SRILM (Stolcke, 2002) with modi-
fied Kneser-Ney discounting (Chen and Goodman,
1996). Mean Error Rate Training (MERT) (Och,
2003) is used for tuning the initial model using the
development set of the abovementioned campaign,
consisting of 887 sentence-pairs, and optimizing to-
wards BLEU. The models are evaluated with BLEU
over the campaign’s test set of 1,664 bi-sentence.
All datasets were tokenized, lowercased and cleaned
using the standard Moses tools.

In all our experiments, we use Incremental GIZA
that allows updating the alignment and translation
models without aligning all the training data at ev-
ery cycle. With Incremental GIZA, the alignment of
the parallel data is identical in both the incremental
and the complete RM generation experiments, since
even though the alignment probabilities are being

8Downloaded from https://wit3.fbk.eu/mt.

php?release=2013-01.
9We used the version released on 14/3/2014.

updated, only the new data is being aligned, while
the older data is left untouched. As a result, we
obtain the same phrase pairs from the new data for
both RM generation methods. Given that, our algo-
rithm produces the exact same reordering model as
its generation from the entire data (up to numerical
accuracy).

6.2 Translation performance

First, we demonstrate that updating the reordering
table help achieving better translation quality. To
that end, we compare all possible combinations of
updating the three phrase-based SMT sub-models
(reordering, translation and language models, de-
noted R, T and L, respectively). Figure 6, that in-
cludes a detailed view of Figure 1, shows the results
of the experiments with each one of these combina-
tions. From the figure we learn that: (i) the reorder-
ing model is the least important one of the three.
This is consistent with prior work, e.g. (Mirkin and
Cancedda, 2013); (ii) updating the reordering model
without updating the translation model has practi-
cally no impact on results, since new phrase pairs
from the new data that are not added to the phrase
table cannot be used in the translation. This is re-
flected in the almost flat line of experiment R, and
in the very similar results of RL in comparison to
L. The slight improvement in this case may be at-
tributed to more statistics that have been accumu-
lated for the phrase pairs that already existed in the
initial data; (iii) when the translation model is up-
dated, adding the reordering model does help, as
seen in RTL vs. TL and RT vs. T.

6.3 Run-time

We now compare the time necessary to train a re-
ordering model from scratch (complete training) vs.
using the suggested incremental update. For this ex-
periment, we used the English-French Europarl cor-
pus, with 1.96 million parallel sentences as A and
10,000 WIT3 sentence-pairs as B. Other details of
the settings did not change.

PACLIC 28

!280

0 1 2 3 4 5 6 7 8 9 10

29.0

30.0

31.0

32.0

33.0

Cycle

BL
EU

28.16

29.44

30.48

30.84

31.51

31.89

32.08

32.63

32.84

33.02

33.36

28.16

28.88

29.55

30.04

30.51

30.67

30.94

31.17 31.19

31.37

31.53

28.16

29.14

30.1

30.33

30.85

31.25

31.59

32.24

32.4

32.65

32.87

28.16

28.43

28.87
29.0

29.16

29.46

29.67

29.84
29.93

30.0
30.1

28.16 28.21 28.21 28.23 28.27 28.31 28.29 28.33 28.35 28.3
28.38

28.16

28.89

29.35

29.72

30.17

30.47

30.68

30.89 30.93

31.12

31.35

28.16

28.4

28.85
28.96

29.13
29.24

29.48

29.71 29.75

29.94 29.93

RTL
RT
TL
RL
R
T
L

Figure 6: Translation performance (BLEU) when incrementally updating the model with additional data, over 10
update cycles, with different combinations of Reordering, Translation and Language models.

To objectively measure the run-time of the re-
quired steps, regardless of the computer’s load at the
specific time of experiment, we use the Linux com-
mand time, summing up the user and sys times, i.e.
the total CPU-time that the process spent in user or
in kernel modes. All measurements were conducted
on a 64-bit Centos 6.5 Linux server, with 128 GB of
RAM and 2 Intel Xeon 6-core 2.50GHz CPUs.

A complete reordering model update, when using
Incremental GIZA, consists of of the following two
steps:

1. Extracting phrase pairs and creating a reorder-
ing file from all the data (A [B)

2. Creating a reordering table from the single re-
ordering file of A [B

In comparison, the incremental update requires
the following steps:

1. Extracting phrase pairs and creating a reorder-
ing file from the new data (B)

2. Creating a reordering table from the reordering
file of B

3. Merging the RTs of A and B

The time required for generating the complete
model in our experiment was 83.6 minutes, in com-
parison to 17.6 minutes for the incremental one, i.e.
4.75 times faster.

We note that A represents a corpus of medium
size, and often the initial corpus would be much
larger.10 Concerning B, say we plan to perform daily
system updates, then a set of 10,000 sentences pairs
constitutes a substantial amount of data in terms of
what we can expect to obtain in a single day. Hence,
the time gain in actual settings may be even larger.

7 Conclusions and future work

This work addressed the incremental update of the
reordering model of a phrase-based SMT system.
We showed that updating this model is useful for
obtaining improved translation, even for a language

10For comparison, the rather popular MultiUN corpus
(Eisele and Chen, 2010) consists of 13.2M parallel sentence
for this language pair (http://opus.lingfil.uu.se/
MultiUN.php, accessed on 7 August 2014).

PACLIC 28

!281

pair such as English-French, where phrase move-
ments are not very prominent (in comparison to
English-Japanese, for example). We proposed a
method for incrementally training this model within
the Moses SMT system, which can be done much
faster than a complete retrain. It thus supports more
frequent SMT model updates to enable quickly ben-
efiting from newly obtained data and user feedback
and reflecting it in the system’s translation. For fu-
ture work we wish to investigate using weighted in-
cremental updates of the reordering model, which
may enable giving, for instance, more weight to in-
domain vs. out-of-domain data or for preferring
more recent data. Another extension of this work
would be to address updating the binarized version
of the reordering table, which enables using the re-
ordering model without loading it into memory.

Acknowledgments

The research leading to these results has received
funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant
agreement n° 287755. We thank Philipp Koehn for
a valuable discussion at the beginning of this work.

References

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation. Computational Linguistics, 19(2):263–311,
June.

Olivier Cappé and Eric Moulines. 2009. On-line
expectation–maximization algorithm for latent data
models. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 71(3):593–613.

Mauro Cettolo, Christian Girardi, and Marcello Federico.
2012. WIT3: Web inventory of transcribed and trans-
lated talks. In Proceedings of EAMT.

Stanley F. Chen and Joshua Goodman. 1996. An empir-
ical study of smoothing techniques for language mod-
eling. In Proceedings of ACL.

Andreas Eisele and Yu Chen. 2010. MultiUN: A multi-
lingual corpus from united nation documents. In Pro-
ceedings of LREC.

Qin Gao and Stephan Vogel. 2008. Parallel implementa-
tions of word alignment tool. In Proceedings of Soft-
ware Engineering, Testing, and Quality Assurance for
Natural Language Processing.

Qin Gao, Nguyen Bach, and Stephan Vogel. 2010. A
semi-supervised word alignment algorithm with par-
tial manual alignments. In Proceedings of the Joint
Fifth Workshop on Statistical Machine Translation and
MetricsMATR.

Philipp Koehn, Amittai Axelrod, Alexandra Birch, Chris
Callison-Burch, Miles Osborne, David Talbot, and
Michael White. 2005. Edinburgh system description
for the 2005 IWSLT speech translation evaluation. In
Proceedings of IWSLT.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of ACL Demo and Poster Sessions.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of MT
Summit.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Abby Levenberg, Chris Callison-Burch, and Miles Os-
borne. 2010. Stream-based translation models for sta-
tistical machine translation. In Proceedings of HLT-
NAACL.

Abby Levenberg. 2011. Stream-based Statistical Ma-
chine Translation. Ph.D. thesis, University of Edin-
burgh.

Percy Liang and Dan Klein. 2009. Online EM for unsu-
pervised models. In Proceedings of NAACL.

Shachar Mirkin and Nicola Cancedda. 2013. Assessing
quick update methods of statistical translation models.
In Proceedings of IWSLT.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of ACL.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. In Proceedings of Interspeech.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of COLING.

