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Abstract

De-identifying textual data is an important
task for publishing and sharing the data among
researchers while protecting privacy of indi-
viduals referenced therein. While supervised
learning approaches are successfully applied
to the task in the clinical domain, existing
methods are hard to transfer to different do-
mains and languages because they require a
considerable cost and time for preparation of
linguistic resources. This paper presents an
efficient unsupervised algorithm to detect all
substrings occurring less than k times in the
input string, based on the assumption that such
rare sequences are likely to contain sensitive
information such as names of people and rare
diseases that may identify individuals. The
proposed algorithm works in asymptotically
and empirically linear time against the input
size when k is a constant. Empirical evalua-
tion on the i2b2 (Informatics for Integrating
Biology and Bedside) dataset shows the ef-
fectiveness of the algorithm in comparison to
baselines that use simple word frequencies.

1 Introduction

The increasing amount of electronically available
and searcheable texts poses an increasing need for
privacy protection. Adversaries may extract previ-
ously unconnected information about a person by
aggregating different data sources. IDs such as so-
cial security numbers in the United States are obvi-
ous means to aggregate data sources, but full names,
residential addresses, and other attributes about in-
dividuals and their combinations may also work as

pseudo identifiers from which one may be able to
identify persons, or to raise the probability of suc-
cessful identification (Sweeney, 2002)(Fung et al.,
2010). While researchers and service providers wish
to publish and share such textual data with the com-
munity to help facilitate further research, it is costly
to do so while preserving utility of non-sensitive part
of the data.

In response to the demand for efficient and ac-
curate automatic methods to help removing sensi-
tive material from textual data, the last decade has
seen progress in automatic anonymization and de-
identification of text (Liu, 2012; Fung et al., 2010;
Uzuner et al., 2007). For example, health care indus-
try puts efforts in utilizing electronic health record
data that is accumulated daily while ensuring pa-
tients’ privacy (Kushida et al., 2012; Meystre et
al., 2010). Nevertheless, two major problems re-
main unaddressed: 1) How to reduce human la-
bor to prepare resources for automatic methods, in-
cluding pattern-matching rules and training data for
supervised-learning systems. 2) How to increase
utility of published text by requiring less preprocess-
ing of the input text.

Our work explores aplicability of string algo-
rithms into privacy-preserving publishing of textual
data that reduce resource requirements. We pro-
pose using new variations of maximum repeats algo-
rithms to unsupervisedly suggest spans to be hidden.
We argue that our approach brings new assets to pre-
vious studies in text anonymization by requiring less
linguistic resources and preprocessing; these points
will be discussed in more detail in Section 3.

Contributions of this paper are as follows.

Copyright 2014 by Yusuke Matsubara and Koˆiti Hasida 
28th Pacific Asia Conference on Language, Information and Computation pages 658–667



PACLIC 28

!659

a b r a c a d a b r a x r a c

Figure 1: The repeats and maximum re-
peats (=2-repeating substrings) in the string
“abracadabraxrac”. Maximum repeats are
indicated as intervals with thicker black lines. Non-
maximum repeats are in thinner gray lines. Note that
every non-maximum repeats is subsumed by at least one
maximum repeat.

• We formalize the notion of k-repeating sub-
strings (Section 4).

• We present a natural and simple generalization
to algorithms for finding maximum repeats, al-
lowing arbitrary choice of the frequency thresh-
old k, and provide theoretical guarantees to the
computational complexity. (Section 5)

• We present an efficient algorithm to cover a
given string with its k-repeating substrings, en-
suring every continuous substring in it has k or
more occurrences. (Section 5)

• We show effectiveness and scalability of the
proposed algorithm by providing empirical per-
formance analyses of the new algorithms, and
release our software implementation. (Sections
6)

2 Approach

Our hypothesis in this paper is that sensitive infor-
mation is more likely to reside in texts with lower
frequency than in those with higher frequency, be-
cause if a piece of information is frequently men-
tioned, it is likely to be already known to the public.
Given statistics of a corpus that is large enough to
represent a (sub-)language, we assume that phrases

with a larger number of occurrences are more likely
to express common knowledge rather than private
information.

We explore computationally practical ways to im-
plement algorithms to test the hypothesis above. We
give a formal definition of k-repeating substrings in
Section 7, based on the hypothesis above. It will
be followed by an efficient algorithm, described in
Section 5, to compute k-repeating substrings, as il-
lustrated in Figure 1, utilizing devices of algorithms
on strings.

It is important to note that the concept of k-
repeating substrings itself is not intended to yield a
theoretical guarantee of anonymity. Rather, our ap-
proach is expected to capture statistical tendencies
and our assumptions are justified by the experimen-
tal evaluation using a real-world dataset, described
in Section 6.

We anticipate further research on how to combine
strengths and complement weaknesses of our work
and other approaches including pattern-based ones
and supervised ones. One of the strengths of our
approach is that it is resource-free and assumption-
free; it works on a unprocessed string and require
no external knowledge sources. We anticipate this
method to be used as an informed baseline before
building a full stack anonymization system. On the
other hand, our approach may be prone to false pos-
itives, because rare sequences do not necessarily ex-
press private information, especially when the given
source of the text statistics is small.

One may think that it is sufficient to simply enu-
merate frequent-enough words or N -grams and use
them as a whitelist to avoid suppressing their occur-
rences. However, such approaches have limitations,
because multiple common words may form a rare
and identifying sequence when combined. For ex-
ample, an address line such as Pine street may serve
as an informative clue to identify a specific loca-
tion, while each of constituents of the expression is
a common word that is unlikely to be suppressed by
simple word frequency threshold. Simple segmenta-
tion by space may not capture subword structure that
is found in highly-inflected languages (such as Ger-
man and Arabic) and agglutinative languages (such
as Chinese and Japanese). On the other hand, N -
grams, regardless of how large N is, it still can have
only fixed-length sequences as units. Our method
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proposed in this paper addressed these problems by
automatically choosing appropriate length of sub-
strings under a certain condition defined in Section
7, without having to rely on linguistic resources.

3 Related work

To put our work in context, we give a brief overview
of studies on privacy-preserving text publishing 1,
describing some of their shortcomings. For more
comprehensive surveys, we refer readers to (Liu,
2012), (Uzuner et al., 2007) and (Kushida et al.,
2012).

Local methods Text de-identification has been in-
tensively studied in the context of protected health
information (PHI) in medical informatics (Meystre
et al., 2010; Kushida et al., 2012). Most of them
use “local” context by matching with predefined pat-
terns or features with weights learned from train-
ing data by a supervised learning algorithm. In
the first i2b2 challenge (Uzuner et al., 2007), it has
been shown that machine learning methods utilizing
PHI-annotated texts by human are effective, while
use of lexical resources such as lists of names and
UMLS (Unified Medical Language System) Meta
thesaurus (Aronson, 2001) play a key role to boost-
ing up the performance. While the state-of-the-
art de-identification methods provide high accuracy
(F-measure=0.98) that almost matches average hu-
man performance (Uzuner et al., 2007), they require
a high cost for data preparation. Top systems of
the first i2b2 (Uzuner et al., 2007) challenge re-
quires various resources: texts in the same domain
with gold-standard annotations, manually curated
patterns and rules, and lexical resources of terms in
the domain (Meystre et al., 2010).

Global methods Another line of research has ap-
plied the idea of k-anonymity (Sweeney, 2002),
originated in the study of anonymizing structured
data, into textual data which is inherently unstruc-
tured. We call here them “global”, because, unlike
local methods described above, they rely on statis-
tics extracted from a data collection to find docu-
ments with rare combination of features. Such rare

1We include studies on privacy-preserving data publishing
related to text, text sanitization, and text de-identification here,
and do not discuss slight differences among them, if any.

combination could work as pseudo identifiers that
help adversaries to identify the individuals a given
document describes. Most of the existing methods
of k-anonymity for texts and strings assume strings
as inseparable values or assume bag-of-words repre-
sentations (Aggarwal and Yu, 2007; Chakaravarthy
et al., 2008; Jiang et al., 2009; Anandan et al., 2012)
as surveyed in (Liu, 2012). While these methods in-
herit theoretical strengths of k-anonymization, they
do not fit well with free-form text, especially when
no thesaurus is assumed to be available.

3.1 Maximum repeats

In string algorithms, finding maximum repeats has
been a focus of attention, in part for its practical
applications including DNA sequencing in bioinfor-
matics. Ilie and Smyth (2011) showed a simple
liner-time algorithm to compute maximal substrings
that occur at least twice in the given string, utiliz-
ing suffix arrays (Manber and Myers, 1993; Nong
et al., 2011) and longest common prefix arrays. In
Section 5 we show that how our method general-
izes their MAXREPEATS algorithm, while maintain-
ing the time complexity linear when k is constant.

We consider this generalization of maximum re-
peats as a key contribution to make this approach
applicable to a wider range of textual data including
free-text natural language. This is because noises
ubiquitously found in natural-language text collec-
tions, including duplicates and near-duplicates, limit
usefulness of the definition of repeats as substrings
with two or more occurrences. It is natural to con-
sider different thresholds for web-scale document
collections and for a collection containing less than
a hundred authors. Our generalized algorithm pro-
vides a way to tune the threshold frequency k to be
better adjusted to the nature of the datasets in con-
cern.

4 Definitions

In this section, we give formal definitions and nota-
tions to notions that we use throughout the paper.

Let T 2 ⌃

n denote the input substring where n
the length of T . Let ? /2 ⌃ is the suppression sym-
bol. The character at the i-th position in T is de-
noted by Ti. A substring of T starting from i and
ending at j is denoted by Ti...j (note that the indexes
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are both inclusive). We call f an suppression func-

tion on ⌃ and ? when f : ⌃

n ! (⌃ [ {?})n ful-
fills (f(T ))i = Ti or ?. Regions on a string T are
denoted by pairs of integers r = (i, j). i and j are
called the beginning and end of the region r, denoted
by r.left and r.right.

We say that a string T fulfills substring k-

anonymity when every substring of T that does not
contain the suppression symbol ?, occurs at least
(k� 1) times elsewhere in the string, allowing over-
laps. For example, when T = abracadabra and
f1(T ) =abra

*

a

*

abra, f1(T ) is a 2-anonymized
string of T because all substrings with no “

*

” in it,
i.e., abra and a, occur twice or more in T . This is
formally defined as follows.

Definition 4.1. Let f an suppression function on ⌃

and ?. Let S(T 0
) an a set of substrings of T 0

such

that S(T 0
) , {(T 0

)i...j | 0  i  j < n, 8c 2
T 0
i...jc 6= ?}. A string f(T ) 2 (⌃ [ ?)n or is a k-

anonymized string of T 2 ⌃

n
, or fulfills substring

k-anonymity, if 8s 2 S(f(T )) has at least k occur-

rences in T .

In what follows, we refer to strings that fulfill
the above definition of substring k-anonymity as k-

anonymized strings. If for 8T 2 ⌃

n f(T ) is a k-
anonymized string, we call f a k-anonymity sup-

pression function or k-anonymizer function. We say
that a substring S0 of an anonymized string S 2
(⌃ [ {?})n is continuous when S0 2 ⌃

n.

5 Method

In this section we introduce a method for realiz-
ing the suppression function using k-repeating sub-
strings defined in Section 4. In order to make it prac-
tical, our objective is to have an algorithm with fol-
lowing properties: it is an efficient ans scalable al-
gorithm, which always transforms the input string
into a k-anonymized string (i.e., no continuous sub-
string will occur less than k times therein), suppress-
ing only a reasonably small number of characters.

These properties are proven in the later part of this
section, and empirically evaluated in Section 6.

We divide the problem of finding substring k-
anonymity suppression into two steps. We first iden-
tify all parts of the input string T that have k or more
occurrences in T , and then fill the original strings
with these repeats so that no pair of repeats neigh-

Table 1: Example of the suffix array and longest common
prefix array of T = abracadabra$

i SAi LCPi TSAi...n

0 11 0 $

1 10 0 a$

2 7 1 abra$

3 0 4 abracadabra$

4 3 1 acadabra$

5 5 1 adabra$

6 8 0 bra$

7 1 3 bracadabra$

8 4 0 cadabra$

9 6 0 dabra$

10 9 0 ra$

11 2 2 racadabra$

bors each other. More specifically, the two compo-
nents are: (1) finding generalized maximum repeats

that occurs at least k times in the input string, and
(2) translating generalized maximum repeats into a
set of regions on the input string that need to be sup-
pressed.

5.1 Generalized maximum repeats

We define generalized maximum repeats of the
string T and the threshold k as a set of repeating sub-
strings that have at least k occurrences in T , allow-
ing overlaps. Once these repeats are identified in the
string, it is straightforward to derive a greedy algo-
rithm for finding suppression that ensures substring
k-anonymity by a greedy algorithm, as we will de-
scribe in Section 5.2.

Our algorithm for generalized maximum repeats
is inspired by the maximum-repeats algorithm pro-
posed by Ilie and Smyth (2011) and contains it as a
special case where k = 2. We start by briefly re-
visiting their method and then we describe how to
generalize it for general k’s.

Ilie and Smyth (2011) use longest common pre-
fix (LCP) arrays to identify maximum repeating sub-

strings (or maximum repeats for short). In their def-
inition, a substring is a repeat when it occurs else-
where in the enclosing string, and a maximum re-
peating substring is a repeat with the property that
extending the substring by one character, either to-
wards the beginning or the end, makes it a unique
substring that occurs exactly once (i.e., not a re-



PACLIC 28

!662

peat any more). Their algorithm achieves linear-
time complexity, based on the fact that suffix arrays
and LCP arrays can be constructed in O(n) time. We
show that by introducing generalized common pre-

fix arrays we can induce a generalized algorithm to
extract substring regions that occur at least k times.

Let us first recall properties of LCPs in relation
to repeats. LCPs are defined on lexicographically
sorted suffixes of the string in concern (Crochemore
et al., 2007). LCPi is defined as the length of the
maximum common prefix of two lexicographically
neighboring suffixes TSAi�1..n and TSAi..n, where T
is the string in concern and SA is the suffix array of
T . When using LCPs for finding repeats, an impor-
tant property to be utilized is that LCP arrays rep-
resent substrings that repeats twice or more in the
given string (or corpus). Let us see how it works
by the example shown in Table 1. The entries with
LCPi = 0 do not contain any repeats in prefixes
of their corresponding suffixes. The entries with
LCPi > 0 corresponds to repeats, which may or
may not be textitmaximum; non-maximum repeats
are entirely contained by at least one larger repeat,
and may be considered redundant. For example, in
Table 1, the entry at i = 2 implies a repeat T10...10

= T7...7 = a, and the entry at i = 2 a repeat T7...10 =
T0...3 = abra. Only T7...10 is maximum among the
substrings T7...7 and T7...10.

We define generalized LCP array GLCPi of T 2
⌃

n and k as the lengths of common prefixes of
(TSAi�1...n, TSAi�2...n, . . . TSAi�k+1...n). Intuitively,
just like LCPi > 0 corresponds to existence of a
repeat (with at least 2 occurrences), an entry with
GLCPi > 0 indicates the substring of T starting at
SAi with length GLCPi has length k or more oc-
currences in T .

We present Algorithm 1 for finding generalized
maximum repeats of T and k. The main objective of
this algorithm is to obtain spans on T that are maxi-
mum repeats as an integer array, mr, where mrj = i
denotes a maximum repeat when i >= 0.

First, suffix arrays and longest common prefix
(LCP) are constructed at Line 1. Note that the con-
struction of suffix arrays requires O(n) time and
space. Likewise, LCP arrays can be constructed
in linear time and space. For their details, we re-
fer readers to (Nong et al., 2011) and (Kasai et
al., 2001). In the experiments, we use a publicly-

Algorithm 1: Finding generalized maxi-
mum repeats of T and k

input : A string T 2 ⌃

n, an integer k
output: A set of substring regions

1 mr size-n array filled with �1’s ;
2 glcp size-n array filled with �1’s ;
3 sa suffix array of T ;
4 lcp longest common prefixes of T ;

5 for i 0 to n do
6 glcpi  min(lcpi�k+1, . . . , lcpi)

7 end

// For each of glcpi, update

the corresponding entry

in mr

8 for i 0 to n do
9 G max(glcpi�k+2, . . . , glcpi+2)

if G � 1 ^ sai < mr

sai+G�1 then
10 mr

sai+G�1  sai

11 end
12 end
13 return {(i, j) | 0  j < n ^ i = mrj}

available implementation jsuffixarrays

2.
At Line 5 we create the generalized longest com-

mon prefix array of T and k, mr. This array in-
dicates existence of substrings that occur at least k
times by taking the minimum of k consecutive val-
ues on longest common prefixes. An value mrj of
mr, when it is non-negative, indicates a repeat be-
ginning at mrj and (inclusively) ending at i.

At Line 8, for each generalized common prefix,
entries of mr are overwritten when the newly found
repeat is longer than the corresponding span the en-
try stores.

At Line 13, we collect maximum repeats as spans
from non-negative values of mr.

Sketch of proof. It is trivial to show the result of Al-
gorithm 1 contains substrings that ocurrs k times or
more. We show that they are maximum by con-
tradiction. Assume a span T [i . . . j] in the result
of Algorithm 1 is not a maximum k-repeat. Then
T [i � 1 . . . j] or T [i . . . j + 1] must be a k-repeat.

2
jsuffixarrays is a Java library written by Dawid Weiss

and available at http://labs.carrotsearch.com/

jsuffixarrays.html.



PACLIC 28

!663

If the former, there exists n where MR[i] > n and
LCP [n] � k. As some point in iteration, MR[i] be-
comes n. Because MR[i] monotonically increases,
when the algorithm terminates, MR[i] � n. The
same can be derived similarly for he latter case. This
is a contradiction. 3

5.1.1 Analysis
The time complexity of Algorithm 1 is given by:

Theorem 5.1. Algorithm 1 is O(kn) in time, where

k is the minimum frequency of the maximum repeats

in the output, and n is the size of the input string.

Sketch of proof. Construction of suffix arrays and
longest common prefix arrays takes O(n) time
(Nong et al., 2011; Kasai et al., 2001). The loop
starting from Line 5 is O(kn), because it iterates
over size-n array and each iteration takes O(k) time
for finding the minimum among the k elements.
Similarly, the loop starting from Line 8 is O(kn) for
there are n iterations and each iteration takes O(k)
for the max operation. By summing these up, the
Algorithm 1 is O(kn) in time.

Note that, in practice, we can usually assume that
k is a small constant. According to our experiments,
typically preferred values of k are less than 10. Yet
we expect that the larger the corpus size is, the larger
the optimal value of k slowly becomes.

5.2 Translating maximum repeats into
suppression

As seen in Figure 1, maximum repeats may overlap
with each other. In Algorithm 2, we present a greedy
algorithm translate a set of regions on T into a set
of non-overlapping suppressed regions, conforming
the substring k-anonymity we defined in Section 4.

Assuming that hash maps and hash sets work in
O(1) time for each operation, we have the following
time complexity of Algorithm 2:

3To empirically evaluate the correctness of the Algorithm 3,
we naively enumerate all continuous substrings in the processed
string and count their frequencies in the original string. When,
due to its quadratic time complexity, exhaustive trial is unre-
alistic (for example, when the input size is larger than tens of
megabytes), we perform the test for a randomly selected sample
of continuous substrings. We performed the test above against
samples are taken from MED in Section 6, varying sizes be-
tween 1% and 10%, all of whose results passed the condition of
the substring k-anonymity.

Algorithm 2: Greedy algorithm for turn-
ing repeats into suppression

input : A set of regions S
output: A set of positions in T

1 map a hash map from integer to a
hash set of pairs of integers ;

2 regions an empty list of integers;
3 flags a all-false Boolean array ;

4 add 8r 2 S to mapr.right�r.left

5 regions map.values

6 foreach (s, e) 2 regions do
7 if (s == 0 _ flagss�1 =

false) ^ flagse+1 = false then
8 for i s to e do
9 flagsi  true

10 end
11 end
12 end
13 return {i | 0  i < n ^ flagsi = true}

Theorem 5.2. When max({r.right � r.left | r 2
S}) is O(1), Algorithm 2 is O(|S|) in time.

Sketch of proof. In Algorithm 2, every operation on
the hash map and list takes O(1) in time. Line 4-5
takes O(|S|) and O(1) operations. Line 6-12 takes
O(|S|+ 1) = O(|S|) operations as per assumption.
Summing these up, Algorithm 2 is O(|S|) in time.

We end this subsection by noting that the condi-
tion in Theorem 5.2 often holds in natural language
in practice. For example, in a preliminary exper-
iment we obtained 63 regions for a 3 mega-byte
string in Japanese. In fact, unless one deals with
strings that are hardly found in natural language,
such as de Bruijn strings(Crochemore et al., 2007) 4

as inputs, it is reasonable to think each repeat occu-
pies only a small region of the parent string, making
r.right� r.left small.

5.3 Covering with k-repeating substrings
By simply sequentially combining Algorithm 1 and
2, we induce a k-anonymization method as Algo-

4Ilie and Smyth (2011) mention de Bruijn strings as strings
with highest possible numbers of maximum repeats.
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rithm 3. A length threshold l for repeats may be set
to filter out too-short repeats. The default value of
l is 1, which allows repeats of all lengths. It works
also as a parameter to prefer whether scattered sup-
pression (lower l) or continuous suppression (higher
l).

Algorithm 3: Algorithm for covering
with k-repeating substrings based on
generalized longest common prefixes

input : A string T 2 ⌃

n, a frequency
threshold k � 2, a lower-bound l
for the length of repeats

output: A string retaining its k-repeating
substrings only

1 def findMaximumRepeats (T, k):
2 yield to Algorithm 1

3 def findCovering (R):
4 yield to Algorithm 2

5 mr {r | r 2
findMaximumRepeats(T, k) ^
r.right� r.left+ 1 � l} ;

6 indexes findCovering (mr) ;
7 return {Si | if 0  i < n^ (if i 2

indexes then Ti else ?)}

Two theorems 5.1 and 5.2 imply that our
anonymization method of covering with k-repeating
substrings, which simply calls Algorithm 1 and then
feeds its result to 2, is O(kn). When k is consid-
ered constant, it is O(n) in time. In order to derive
this conclusion, we suffice it to note that the size of
the input to Algorithm 2, which is the output of Al-
gorithm 1, is O(n) where n is the size of the input
string, because the size of the array MR in Algo-
rithm 1 is n.

6 Experiments

We empirically evaluate the efficiency and scalabil-
ity of the proposed method, described in Section 5.

6.1 Materials
We use following materials and implementation for
the experiments.

Corpora Table 2 summarizes statistics of the cor-
pora we used for the following experiments. In ad-

Table 2: Statistics of the corpora used to evaluate the k-
repeating substrings method based on generalized longest
common prefixes (the proposed method). Sizes are in
characters. E: English. J: Japanese.
Name Size Content type
DEID 1,283,481 diagnostic reports (E)
MED 7,192,989 research papers (E)
WKT 45,838,626 dictionary (J)

dition to a de-identification dataset, our primary tar-
get, we add corpora of Japanese, a language without
word boundary in its orthography, and corpora of
differing sizes for comparison and scalability eval-
uation. DEID is a part of the datasets used in the
i2b2 shared task of text de-identification (Uzuner et
al., 2007), containing diagnostic reports written in
English. The portion of the i2b2 dataset we eval-
uate on is taken from its training set, and consists
of 388 records. The remaining 283 of the training
set were used to find the optimal parameter values
of the length lower-bound l (described in Section
5.3) and percentage R (described in Section 6.2).
MED refers to a corpora composed of 50,000 En-
glish abstracts, extracted from the publicly-available
MEDLINE abstracts 5 containing abstracts of re-
search paper in the biomedical domain in English.
WKT refers to an approximately 38% sample an
XML dump of a publicly-available multilingual dic-
tionary, containing 31,894 entries 6. All corpora
were preprocessed to remove XML tags expressing
meta information.

Implementation We implemented our method us-
ing Scala in 714 lines excluding comments and
blank lines. We usedjsuffixarrays

2, a suffix array and
longest common prefixes library, and a standard Java
virtual machine 7. As soon as this work is published,
we will provide our implementation as a Java library,
publicly available through our website89. We ran the

5The MEDLINE abstracts are available at http://mbr.
nlm.nih.gov/.

6We used the dump of its Japanese edition with current ver-
sions only, available at http://dumps.wikimedia.org/
jawiktionary/20130202/.

7We used Java Standard Edition Runtime Environment
1.6.0 22, Java HotSpot 64-Bit Server VM.

8
http://www.yusuke.matsubara.name

9
http://github.com/whym/growthring
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Figure 2: Recall-Precision curves of the proposed gen-
eralized maximum repeats algorithm (“MR”), the base-
line word-based method (“Word”), and their hybrid
(“MR+Word”) against the i2b2 dataset DEID described
in Table 2. Each plot point corresponds to different k
ranging from 2 to 18. Parameters were chosen with a de-
velopment set were l = 6 and R = 0.2 (See Sections 5.3
and 6.2 for their definitions).

program on Java 1.6.0 22 on Linux 2.6.26-2-amd64.
All experiments were performed on a computer with
Intel Xeon E5410 2.33 G Hz (2⇥ 4 cores) CPU and
24GB memory.

6.2 Evaluation metrics

Precision-Recall We use token-based precision-
recall against the de-identification dataset of i2b2

(Uzuner et al., 2007) to measure the utility of the
algorithms. We take tokens labeled as “PHI” (pro-
tected health information) in the i2b2 dataset as pos-
itive examples, and the others negative examples. To
decide whether a partially suppressed token by an
algorithm should be protected or not, we introduce
a parameter R (0%  R  100%) and interpret
tokens with more than R % of its component char-
acters suppressed as protected (or positive) tokens
in the system’s output. We also introduce a set of
white-space characters and other symbols which are
to be unsuppressed regardless of the judgement by
the algorithm. This is necessary in order to ensure
that all token boundaries are kept consistent to al-
low comparison, and to ensure that most obvious to-
kens with only one character are caught. The set is
composed of 16 characters including space, new line

Figure 3: Computational time of the proposed method
(gen. max. repeats) for covering with k-repeating sub-
strings against the input size where k = 4. (WKT in
Table 2)

Figure 4: Ratio of the number of positions unsuppressed
by the proposed method (gen. max. repeats) to cover the
input string with its k-repeating substrings where k = 4,
against the input length. (WKT in Table 2)

character, tab, parentheses, etc.

Time To evaluate the scalability, we measure the
wall-clock time elapsed while running the program.

Unsuppressed ratio We measure the ratio of un-
suppressed positions on the input string T against
the length n = |T |. Larger values are preferred
because it preserves a larger part of the text, offer-
ing better readability and usefulness of the published
text.

6.3 Results
Figure 2 shows precision-recall curves of the meth-
ods against the DEID dataset, with plot points ob-
tained by varying the threshold value of k of re-
peats, ranging from 2 to 18. The proposed method
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gave higher precisions with a similar level of recall.
Moreover, a hybrid method “MR+Word”, which we
will discuss in Section 7, provides an alternative in-
clined towards even better precision with a slight
drop in recall.

We measured the running time varying the input
from less than 1% to 100% of the corpora. Figure
3 shows the running time for samples with different
sizes taken from the corpus WKT. It is reasonable
to say the running time is linear to the input size.
The fluctuations found in the elapsed times are con-
sidered to be due to locality in the repetitiveness of
the text, and fluctuations in IO responses of the com-
puter.

Figure 4 shows how much portion of the input
string survives after covering with k-repeating sub-
strings where k = 4. Notice, except for the initial
fluctuations for the inputs of less than 10 mega bytes,
that the ratio consistently raises along the increase of
the input. This is natural because, having k fixed, the
larger the original string is, the more substrings may
have frequencies higher than or equal to k.

7 Discussions and future work

Here we discuss the theoretical and empirical results
given in Sections 5 and 6, and describe possible im-
provements of the proposed method.

7.1 Effectiveness

We consider that precision and recall shown in Fig-
ure 2 are a promising indication that our approach
using generalized maximum repeats provides a ba-
sic unsupervised baseline and complementary infor-
mation that might be unavailable with existing ap-
proaches. Higher precision values combined with
similar recall values of the proposed method against
the word-based baseline mean that the proposed
method gives a less noisy hint to indicate regions
with information that should be suppressed.

It was unsurprising to see that the performance
of the unsupervised methods discussed so far is not
close to that of supervised methods which score at
more than 90% in F-measure as reported in (Meystre
et al., 2010). We argue again that our goal is to find
a promising unsupervised way to augment existing
supervised methods, and that our results support our
hypothesis that covering with k-repeating substrings

yields a useful result, when no word boundary or
morphological boundary is assumed.

A manual inspection of the results revealed that
the proposed maximum repeats algorithm not only
outperformed the word-based baseline, but also it
produced a suppression pattern that was signifi-
cantly different from the baseline. To demonstrate
this, we implemented a simple hybrid method of the
two; the hybrid method is a simple consensus of
the word-based baseline and the maximum repeats
method. Its results shown in Figure 2 demonstrates
that this re-examination step yields better precision
scores, by a considerable margin, that were unattain-
able by any of the two.

7.2 Document-aware anonymity

Natural language data may have informal structure
with units such as documents where repeats inside of
a unit may be ignored in the context of anonymiza-
tion, because those occurrences are may not inde-
pendent; without a notion of document it is hard to
properly treat cases where a patient name is repeat-
edly mentioned in one document which describes
the patient itself, but does not occur elsewhere in a
document collection. One way to incorporate docu-
ment boundaries in our framework may be employ-
ing ideas of pseudo characters for document bound-
aries from (Yamamoto and Church, 2001).

7.3 Computational efficiency

We consider the computational time of the proposed
method is satisfactorily small both in theory (Theo-
rems 5.1 and 5.2), and in practice (Figure 3) up to the
scale of 60 megabytes. We also note that our Scala
implementation is not fully optimized, allowing a
room for further software optimization for speedup.

Nevertheless, for massive text data, which may be
larger than the typical RAM size, our method may
still need to introduce a way to reduce the memory
footprint. Although we believe that the space com-
plexity of the proposed algorithm is O(n) as well,
it is still demanding of space in practice, because
it stores all the arrays on memory. Following other
work dealing with massive data using suffix arrays,
solutions to memory constraints may include dis-
tributed processing (Kulla and Sanders, 2007), ex-
ternal memory algorithms (Bingmann et al., 2012)
and succinct data structures.
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8 Conclusion

In this paper, we have introduced the problem of
covering a string with its k-repeating substrings,
and given efficient algorithm to solve it. Based
on the hypothesis that rare substrings are likely to
contain sensitive information, we have applied it to
the task of text de-identification. Analyses on its
computational complexity and empirical evaluations
using real-world data have shown that the method
may augment traditional ones for privacy-preserving
publishing of textual data.
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